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Packet Switching in a  Multiaccess  Broadcast  Channel: 
Performance  Evaluation 

Abstract-In this paper, the rationale and  some  advantages for 
multiaccess  broadcast  packet communication using  satellite and 
ground radio  channels  are discussed. A mathematical model is form- 
ulated for a “slotted ALOHA” random  access system. Using this 
model, a theory is put forth which gives a  coherent  qualitative  inter- 
pretation of the  system stability behavior which leads  to the defini- 
tion of a stability measure.  Quantitative  estimates for the relative 
instability of unstable  channels  are obtained.  Numerical results  are 
shown illustrating  the  trading relations  among  channel  stability, 
throughput, and delay. These  results provide tools  for the perform- 
ance evaluation and design of an uncontrolled slotted ALOHA sys- 
tem. Adaptive channel control schemes  are  studied  in a companion 
paper. 

I 
INTRODUCTION 

N THIS and  a  forthcoming  paper [l], a  packet switch- 
ing technique based upon the  random access concept of 

the ALOHA System [Z] will be  studied in detail. This 
technique, referred to as  slotted ALOHA random access, 
enables efficient  sharing of a data communicatiori channel 
by a large  population of users, each with a bursty  data 
stream.  This  packet switching technique may  be, applied 
to  the use of satellite  and ground  radio channels for 
computer-computer and terminal-computer communica- 
tions,  respectively’ [3]-[10]. The multiaccess broadcast 
capabilities of these channels render them  attractive solu- 
tions to two problems: 1) large computer-communication 
networks  with nodes distributed over wide geographic 
areas,  and 2 )  large  terminal access networks  with po- 
tentially mobile terminals. 

The objective of this  study is to develop analytic models 
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and methods  for the evaluation and optimization of the 
channel  performance of a  slotted ALOHA system. The 
problem of performance  evaluation is addressed  in  this 
paper. In [l], we present  dynamic  channel  control pro- 
cedures as solutions to some of the issues considered herein. 

In  this  paper,  the rationale  for multiaccess broadcast 
packet communication is first discussed. The  mathematical 
model to be considered is then described. Following that, a 
theory is proposed which explains the dynamic and 
stochastic  channel  behavior. In particular, we display the 
delay-throughput  performance  curves  obtained  under the 
assumption of equilibrium conditions [6]. We then demon- 
strate  that a slotted ALOHA channel  often  exhibits  “un- 
stable  behavior.” A stability definition is proposed which 
characterizes  stable and unstable channels. A  stability 
measure (FET) is then defined which quantifies the 
relative  instability of unstable channels. An algorithm is 
given for the calculation of FET. Finally,  numerical  results 
are shown which illustrate  the  trading relations  among 
channel  stability,  channel  throughput,  and  average  packet 
delay. Our main concern in  this  paper is the consideration 
of the  stability issue and  its  effect on the channel through- 
put-delay  performance. 

MULTIACCESS  BROADCAST  PACKET 
COMMUNICATION 

Rationale 
For  almost a century,  circuit switching dominated the 

design of communication networks. Only with the higher 
speed and lower cost of modern  computers  did  packet com- 
munication become competitive. It was not  until approxi- 
mately 1970 that  the computer  (switching)  cost  dropped 
below the communication (bandwidth)  cost  in  a  packet 
switching network [ll]. This also marked  the first ap- 
pearance of packet switched computer-communication 
networks [Z], [12]. 

Circuit switching is relatively inefficient for  computer 
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communications, especially  over long distances. Measure- 
ment  studies [13] conducted on time-sharing systems 
indicate that  both computer and  terminal  data streams are 
bursty. Depending on the channel speed, the  ratio between 
the peak and  the average data  rates  may  be  as high: 
as 2000 to 1 [SI. Consequently, if a high-speed point-to- 
point channel is used, the channel  utilization may be ex- 
tremely low  since the channel is idle most of the time. On 
the other hand, if a low-speed channel is used, the trans- 
mission delay is large. 

The above dilemma is caused by channel  users imposing 
bursty random  demands on their communication channels. 
By  the law of large  numbers  in  probability  theory, the 
total demand at  any  instant from a large  population of 
independent  users is, with high probability, approxi- 
mately  equal to  the  sum of their average  demands  (i.e., a 
nearly  deterministic quantity).  Thus, if a channel is 
dynamically shared  in some fashion among many users, 
the required channel bandwidth to  satisfy a given delay 
constraint may  be much less than if the users are given 
dedicated channels. This concept is known as statistical load 
averaging and  has been applied in  many computer-com- 
munication schemes to various degrees of success. These 
schemes include: polling systems [14], loop systems [15], 
asynchronous time division multiplexing (ATDM) [lS], 
and  the store-and-forward packet switching concepts 
[17]-[19] implemented in  the  ARPA network [lz]. 

We are  currently facing an enormous growth in com- 
puter networks [20]. To design cost-effective computer- 
communication networks for the  future, new techniques 
are needed  which are capable of providing efficient  high- 
speed computer-computer and terminal-computer com- 
munications in a large network  environment. The applica- 
tion of packet switching techniques to radio communica- 
ti.on (both  satellite  and ground  radio  channels)  appears to 
provide a solution. 

Radio is a multiaccess broadcast medium. That is, a 
signal generated by a radio transmitter  may be received 
over a wide area by  any number of receivers. This is 
referred to  as  the broadcast capability. Furthermore,  any 
number of users may  transmit signals over the same 
channel. This is referred to  as  the multiaccess capability. 
(However, if two signals at  the same  carrier  frequency 
overlap in  time a t  a radio receiver', we assume that 
neither is  received correctly. This  destructive interference 
is the key issue in  studying  the multiaccess radio channel 
used in a packet switching mode.) Thus, a single ground 
radio channel provides a completely connected network 
topology for a large number of nodes within  range of each 
other. Similarly, a satellite  transponder in a geostationary 
orbit above the  earth  acts  as a radio repeater.  Any  number 
of earth stations may  transmit signals up  to  the  satellite  at 
one carrier frequency (the multiaccess channel). Any 
signal received by  the  satellite  transponder is beamed back 
to  earth  at  another frequency (the broadcast channel). 
This broadcasted signal may be received by all  earth 

1 This event will be referred to as a channel collision. 

stations covered by  the transponder  beam. Thus, a satel- 
lite channel (consisting of both  carrier frequencies) pro- 
vides a completely connected network topology for all 
earth stations covered by  the  transponder beam. 

Consider the use of packet communication in a com- 
puter-communication network  environment to  support 
large populatons of (bursty) users over a wide area. We 
can then identify and summarize the following advantages 
of satellite  and ground  radio channels over conventional 
wire communications. 

1 )  Elimi?lation of Complex  Topological  Design  and 
Routing  Problems: Topological design and routing prob- 
lems are  very complex in networks with a large population 
of users. Existing implementations  suitable for a (say) 50 
node network may become totally inappropriate for a 500 
node network required to perform the  same functions 
[21]. On the  other  hand, ground radio and  satellite 
channels used in  the multiaccess broadcast mode provide a 
completely connected network topology, since every  user 
may access any  other user covered by  the broadcast. 

2 )  W i d e  Geographical Areas: Wire communications be- 
come expensive over long distances (e.g., transcontinental, 
transoceanic).  Even on a local  level, the communication 
cost, for an interactive user on an alphanumeric console 
over distances of over 100 miles may easily exceed the cost 
of computation [2]. On the  other  hand,  satellite  and radio 
communications are relatively distance independent, and 
are especially suitable for geographically scattered users. 

3) Mobility of Users: Since radio is a multiaccess broad- 
cast medium, it is  possible for users to move around freely. 
This consideration will  soon  become important  in  the 
development of personal terminals  in future telecommuni- 
cation  systems [22] as well as  in aeronautical and mari- 
time applications [23]. 

4) Large  Population of Active  and  Inactive  Users: In  
wire communications, the system overhead usually in- 
creases with the  number of users (e.g., polling schemes). 
The maximum number of users is  often bounded by some 
hardware  limitation (e.g., the fan-in of a communications 
processor). In radio communication, since each user is 
merely represented by  an  ID number, the number of 
active  users  is  bounded  only by  the channel capacity and 
there  is no limitation to  the number of inactive (but 
potentially active) users beyond that of a finite address 
space. 

5)  Flexibility in System  Design: A radio  packet com- 
munication  system  can become operational  with  two or 
three users. The size of the user population  can be in- 
creased up  to  the channel capacity.  More  users  can be 
accommodated by increasing the radio channel band- 
width. In  other words, the communication system  can be 
expanded or contracted  without  major changes in  the 
basic system design and operational schemes. 

6)  Statistical  Load  Averaging: Wire communication 
links are more efficiently utilized in a store-and-forward 
packet switched network than  in a circuit switched net- 
work. However, at  any  instant,  there  may  be unused 
channel capacity in some parts while  congestion exists in 
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other  parts of the network. The application of packet 
switching techniques to a single high-speed satellite or 
radio channel permits the  total demand of all user input 
sources to be statistically averaged at  the channel. Note 
also that each user  transmits data  at  the wide-band 
channel rate. 

7) Multiaccess  Broadcast  Capability: This  capability in 
radio communication may be useful for  certain  multipoint- 
to-multipoint communication applications. 

The  Multiaccess  Channel  Model 
Consider a  radio communication system  such  as  a 

packet switched satellite  system [5>[10] or the ALOHA 
System [2]. In each case, there is a broadcast channel for 
point-to-multipoint communication and a multiaccess 
channel  shared by a  large  number of users. Since the 
broadcast  channel is used by a single transmitter, no 
transmission conflict will arise. All nodes covered by  the 
radio  broadcast  can receive on the same  frequency, picking 
out packets  addressed to themselves and discarding 
packets  addressed to others. 

The problem we are faced with is how to effect time- 
sharing of the multiaccess channel among all users in  a 
fashion which produces an acceptable level of perform- 
ance. As soon as we introduce the notion of sharing  in  a 
packet switching mode, we must  be  prepared to resolve 
conflicts which arise when simultaneous  demands are 
placed upon  the channel.  There are two obvious solutions 
td  this  problem: the first is to form  a queue of conflicting 
demands and serve them  in some order;  the second is to 
(‘lose” any  demands which are  made while the channel is 
in use. The former  approach is taken  in  ATDM  and  in 
store-and-forward networks assuming that storage may  be 
provided economically at  the point of conflict. The  latter 
approach is adopted in the ALOHA System  random access 
scheme;  in  this  system,  in  fact, all simultaneous  demands 
made  on  the radio channel are lost. 

Let  us define channel  throughput  rate Xout to be the 
average  number of correctly received packet transmissions 
per  packet  transmission  time  (assuming  stationary con- 
ditions). We also define channel  capacity X,,, to be the 
maximum possible channel  throughput  rate.  The channel 
capacity of a pure ALOHA multiaccess channel was shown 
by Abramson to be 1/2e s 18  percent for a fixed packet 
size [Z]. Under similar assumptions,  Gaarder showed that 
a pure ALOHA channel  with  a fixed packet size is always 
superior (in  terms of channel  capacity) to one with 
different  packet sizes [24]. 

Roberts suggested that  the channel may  be  slotted  by 
requiring  all  users to synchronize2 the leading edges of 
their  packet  transmissions to coincide with an imaginary 
time  slot  boundary at  the multiaccessed radio receiver 
[25]. The  duration of a channel time  slot is chosen to be 
equal to a packet  transmission  time. The resulting scheme 
will be referred to as  “slotted ALOHA random access” or 

It will not be addressed in this paper. 
* The problem of synchronizing channel users is a nontrivial one. 

“slott,ed ALOHA.” In this scheme, the users transmit 
newly generated  packets into channel time slots inde- 
pendently. In  the event of a  channel collision, the collided 
packets are  retransmitted  after random retransmission 
delays. (See Fig. 1.) The channel capacity of a  slotted 
ALOHA channel was shown to be l / e  N 36 percent [25], ’ 

To achieve a channel throughput  rate larger than  the 
36 percent  limitation, various other multiaccess broadcast 
packet swiching schemes have  been proposed to  take 
advantage of special system  and traffic characteristics. 
The reader is referred to  the references [3],  [7],  [26] for 
description of t,hese schemes. 

Consider a  slotted ALOHA channel. The channel 
input in  a t,ime slot, is defined to be  a  random  variable 
representing t,he tot,al  number of new packets transmitted 
by all users in that time  slot. Assuming stationary condi- 
tions, the channel input  rate X is the average  number of 
new packet  transmissions  per  time slot.. The channel  trafic 
in  a  time  slot is  defined to be a  random  variable  represent- 
ing the tot(a1 number of packet  transmissions (both new  and 
previously  collided packets)  by  all  users in  that bime slot. 
Assuming stationary conditions, the channel traffic rate 
G is the average  number of packet  transmissions  per  time 
slot.  The channel’  throughput (or output)  in a  time  slot is 
defined to be  a  random  variable  representing the number 
(0 or 1) of successful packet  transmissions  in t,hat time 
slot. Assuming stationary conditions, the channel  through- 
put  (output)  rat’e Sout is t,he probability of exact,ly one 
packet  transmission  in  a  channel  time  slot. 

The retransmission  delay (RD) incurred  by an un- 
successful packet  transmission  may  be regarded as  the 
sum of a deterministic component ( R )  and a random com- 
ponent.  The random component is necessary since if 
collided packets are  retransmitted  after  the  same  deter- 
ministic delay, they mill collide again for surk. In a  ground 
radio  system, RD corresponds to  the positive acknowledg- 
ment time-out interval [a]. In a  satellite  system, since 
each channel  user  listens to  the satellit,e broadcast., one 
round-trip  propagation  time  after  transmittsing  a  packet 
he knows .whether he was successful or if a channel colli- 
sion occurred. In this case, the deterministic component 
corresponds to a  round-trip  satellite  propagation  delay. 
We shall assume a noise-free channel such t,hat a  packet is 
received incorrectly if and only if it  suffered a  channel 
collision. In [SI, a uniform probability  dist,ribution is 
assumed for the random component of RD such that 
each user  retransmits  a previously collided packet at 
random  during one of the next K slot,s (each  such slot 
being chosen with  probability l /K) .  Thus,  retransmission 
will take place either R + 1, R + 2, - - ‘or R + K slots 
after  the previous t,ransmission. This is said to be the 
uniform retransmission  randomization scheme. Under  this 
scheme, equilibrium throughput-delay tradeoffs have 
been obtained for a  slotted ALOHA channel with  a 
Poisson input source (the infinite population  model). 
Such  throughput-delay  contours are shown here  in Fig. 2 
for different values of K. Note that  the minimum envelope 
of these  contours defines the optimum channel perform- 
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Fig. 2. Equilibrium  throughput-delay tradeoff. 

ance. These  results correspond to  the use of a 50 KPBS 
satellite channel, 1125 bits per packet,  and  a  satellite 
round-trip  propagation  delay of 0.27 s for  all  users. Thus 
R is equal to 12 slots and  there  are 44.4 slots  in one second. 
(These  numbers will be assumed throughout  this  paper.) 
In Fig. 2, D represents the average  packet  delay  in  slots. 
Note that  the channel input  rate S is equal to  the channel 
throughput  rate Sout under the assumption of channel 
equilibrium. The channel capacity S,,, approaches l / e  in 
the limit as K --$ w . For K = 15, it is almost  there.  For 
values of K between 8 and 15, the equilibrium throughput- 
delay tradeoffs are  very close to  the optimum perform- 
ance envelope over a wide range of S. 

The  analytic results  presented so far  are based upon the 
assumption that  the channel is in equilibrium. Referring 
to Fig. 2, we see that given S and K (say K = 40) , there 
are two possible equilibrium solutions for D !  They cor- 
respond to a  small  delay  value DA and a much  larger 
delay  value Dg. (We  shall  refer to  the equilibrium point 
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given by S, K ,  and DA as  the channel  operating  point, since 
this is the desired channel performance given S and K.)  
This observation suggests that  the assumption of equi- 

, librium conditions adopted  in most previous analytic 
models [4]-[7] may  not be valid. 

In order to  study  the dynamic behavior of these chan- 
nels, simulations were performed for  the infinite popula- 
tion model [lo]. Each  simulation run was observed to 
behave  in the following manner.  Starting  from an initially 
empty  system, the channel stays  in equilibrium at  the 
channel  operating  point  for  a  finite period of time  until 
stochastic  fluctuations give rise to some high channel 
traffic rate which reduces the channel throughput  rate 
which in turn  further increases the channel traffic rate. As 
this vicious cycle *continues, the channel becomes inun- 
dated  with collisions and  retransmissions.  At the same 
time, the channel  throughput  rate vanishes rapidly to zero. 
This phenomenon will be referred to as channel  saturation. 
Thus, we realize that  the equilibrium throughput-delay 
tradeoffs  are  not sufficient to characterize the performance 
of the infinite  population model. A more accurate  measure 
of channel performance must reflect the  trading relations 
among channel  stability,  throughput  and  delay.  A  mathe- 
matical model with  a simpler structure  than  that used in 
[SI will be defined  below. This model is similar to  the one 
studied  by Metcalfe [4]. Using this model, the concepts of 
channel saturation  and  stability  in a  slotted ALOHA 
random access channel have been characterized [SI, [lo]. 

STABILITY-THROUGHPUT-DELAY 
TRADEOFF  PERFORMANCE 

In this  section,  a  Markovian model is first formulated 
for  a  population of M channel users. The variable M is 
assumed to be large and  may be  either finite or infinite. A 
theory is then proposed which characterizes the  instability 
phenomenon in the following ways. 

1) Stable  and unstable channels are defined. 
2) In a  stable channel, equilibrium throughput-delay 

results (as shown in Fig. 2) are achievable over an infinite 
time horizon. In  an unstable channel, such channel per- 
formance is achievable only for some finite time period 
before  the channel goes into  saturation. 

3) For unstable channels, a  stability  measure is  defined 
and  an efficient computational procedure for its calculation 
is given. 

4) Using the above  stability measure, the stability- 
throughput-delay tradeoff for unstable channels is ex- 
amined. 

The  Markovian  Model 
We consider a  slotted ALOHA channel with a user 

population consisting of M users.  Each  such user can be  in 
one of two states: blocked or thinking. In  the thinking 
state, a user generates  and  transmits a new packet  in  a 
time  slot  with  probability u. A  packet which had  a channel 
collision and is waiting for retransmission is said to  be 
backlogged. The retransmission  delay RD of each back- 
logged packet is assumed to be geometrically distributed, 
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i.e., each backlogged packet  retransmits  in  the  current 
time  slot  with  probability p .  Assuming bursty users, we 
must  have p >> u. From  the  time a user generates  a  packet 
until  that  packet is successfully received, the user is 
blocked in the sense that he  cannot  generate (or accept 
from his input source) a new packet  for transmission. 

Let N t  be a random variable (called the channel  backlog) 
representing the  total  number of backlogged packets a t  
time t. The channel input  rate a t  time t is S t  = ( M  - 
N t )  u. Note that St  decreases linearly as Nt increases. The 
vector (Nt ,S t )  will  be denoted as  the channel  state vector. In  
this  context,  both M and u may be functions of time. We 
shall  assume M and u to be  time-invariant unless stated 
otherwise. In  this case, ' N t  is a  Markov process (chain) 
with  stationary  transition probabilities and serves as  the 
state description for the  system.  The discrete state  space 
will  now consist of the  set of integers { 0,1,2, - - . , M } .  The 
one-step  state transition  probabilities of N t  are,  for i = 
0,1,2,. * .,M, 

sitates  a  state description consisting of the channel  history 
for a t  least R consecutive time slots. The difficulty in 
mathematical analysis using such  a state description was 
illustrated  in [ lo] .  However,  simulation  results  have 
shown that  the  slotted ALOHA channel  performance (in 
terms of average  throughput  and delay) is dependent 
primarily upon the average retransmission delay (m) and 
quite insensitive to  the exact probability  distributions 
considered [lo]. In  order to use the'analytic  results of the 
Markovian  model here to  predict  the  throughput-delay 
performance of a slotted ALOHA channel  with  nonzero R, 
it is necessary to use a value of p in  the  Markovian  model 
which gives the same m. For  example, to  approximate a 
slotted ALOHA channel  with  uniform retransmission ran- 
domization, we must  let 

I O' 
j 5 i - 2  

ip(1 - p)"-'(l - u)M--i 

(1 - p ) i ( M  - i ) a ( l  - , )M--i-- l+ [l - . ip ( l  - p)i--'](l - u ) M - - i  j = i 

( M  - i ) u ( l  - u)M--(--'[l - ( 1  - p)i] j = i + l  
pii = Prob [Nt+-l = j I Nt  = i] = 

The  assumption  that RD has  a  memoryless  geometric 
distribution  permits  a  simple  state description for the 
mathematical  model.  However,  this  assumption implies 
that RD has  a zero deterministic  component ( R  = 0 ) .  In  
a satellite  channel  this  obviously  represents an approxima- 
tion.  (However, it may  be physically realizable in  radio 
communications  over short distances in which channel 
propagation delays are negligible compared to a packet 
transmission  time.) A (geostationary)  satellite  channel 
has a round-trip  propagation  delay of 0 . 2 7 . ~ ~  which  neces- 

We  define the  length of time for which a  packet is back- 
logged to be the backlog  time of the  packet  and  denote  the 
average backlog time by Db. To obtain  the  average  packet 
delay  (as defined in [SI), we must  add  to Db, R + 1 time 
slots, which represent  the  delay incurred by each successful 
transmission. Thus, we have 

D = D b + R + l .  (4) 

Numerical  results in this  paper will be  expressed  in 
terms of K (rather  than p )  through  use of (3) and (4) for 
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comparison  with  previous  results for channel  performance 
[SI. 

The Theory 

Conditioning on Nt = n, the expected  channel  through- 
put Sout(n,u) is the  probability of exactly one packet 
transmission in the  tth  time  slot.  Thus, 

Sout(n,u) = ( 1  - p)"(M - n ) u ( l  - ~)~- -n - - l  

+ np(1 - p)"-'(l - u ) ~ - " .  (5) 

For the infinite population  model, i.e., in  the  limit  as M 
~0 and u 0 such that M u  = S is finite and  the channel 
input is Poisson  distributed a t  the  constant  rate S, the 
above  equation  reduces to 

Sout(n,S) = (1  - p )  "S exp (-SI 
+ np(1 - p)"--lexp (-AS). (6) 

This expression is very  accurate  even for finite M if u << 1 
and if  we replace S = M u  by S = ( M  - n)  u. We assume 
that  the condition u << 1 (which implies bursty users) is 
always satisfied in  problems of interest  to us. 

In Fig. 3, for a fixed K we sketch Sout(n,S) as  a  three- 
dimensional  surface  above the (n,S) plane. Note that  there 
is an equilibrium  contour in  the (n ,S)  plane defined as  the 
locus of points on  which the channel input  rate S is equal 
to  the expected  channel throughput Sout(n,S) given by 
(6) .  In  the crosshatched region enclosed by  the equilibrium 
contour, Sout(n,S) exceeds S ;  elsewhere, S is greater  than 
Sout(n,S). In  Fig. 4, a  family of equilibrium contours for 
various K are displayed. We see that if we increase the 
average retransmission delay (by increasing K or equiva- 
lently decreasing p )  , the equilibrium contour  moves  up- 
wards. We  show  below that these equilibrium contours 
play  a crucial role in determining  the  stability behavior of 
the channel. 

Given an equilibrium  contour  in the (n,S) plane, we 
first consider the  dynamic behavior of the channel  subject 
to time-varying inputs using  a fluid  approximation inter- 
pretation.  The following example serves to  illustrate  the 
underlying  concepts. 

Consider the case in which u is constant while M = 

M ( t )  is a  function of time  as  shown in Fig. 5 .  We  use the 
fluid approximation for the  trajectory of the channel state 
vector ( N t , S t )  in  the (n,S) plane as  sketched  in Fig. 6. 
Recall that S t  = ( M  - N t ) u .  The arrows  indicate  the 
"fluid"  flow direction which depends on the  relative magni- 
tudes of the  instantaneous  channel  throughput  rate 
Sout(n,S) and  the channel input  rate S. Two possible 
cases are shown corresponding to different values of the 
amplitude M3, of the  input pulse in Fig. 5 .  The solid line 
(Case 1 )  represents  a  trajectory which returns  to  the 
original state on the equilibrium contour  despite  the  input 
pulse. The dashed line (Case 2) represents  a less fortunate 
situation  in which the decrease in  the channel input  rate at 
time t z  is not sufficient to  bring  the  trajectory  back  into  the 

415 

0 I 
S 

Fig. 3. Throughput surface  above the (n,S) plane. 

n 

" 
0 .IO .20 . 3 0  

CHANNEL  INPUT  (PACKETWSLOT) 

Fig. 4. Equilibrium  contours  in the (n,S) plane. 

n 

S 
Fig. 6. Fluid approximation  trajectories. 

eventually,  the channel '(fails" as a  result of an increasing 
backlog and a vanishing  channel throughput. 

The  above example  demonstrates  channel  saturation 
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ditions  under which the  slotted ALOHA channel with a 
stationary input  (constant M and u) can go into  saturation 
as a result of statistical  fluctuations. 

Assume that M and u are  constant.  The  trajectory of 
( N t , S t )  is constrained to lie on the  straight line X = 

(A4 - n)  u called the channel load line which intercepts the 
n-axis a t  n = M and  has a slope equal to - I/U. We  now 
propose the following definition for characterizing stable 
and  unstable channels. 

The  Stability  Definition: A  slotted ALOHA channel is 
said to be stable if its load line intersects  (nontangentially) 
the equilibrium  contour  in  exactly one place. Otherwise, 
the channel is said to be unstable. 

Examples of stable  and  unstable channels are shown in 
Fig. 7. Arrows on the channel  load lines indicate directions 
of fluid flow given by  the fluid approximation. In other 
words, the arrows point  in the direction of increasing 
backlog size if X > Sout (n,X) and  in  the direction of de- 
creasing backlog size if Xout(n,S) > X. 

Each  channel  load  line may  have one or more equilib- 
rium  points. A point  on the load line is said to be a stable 
equilibrium  point if it acts  as a "sink" with  respect to fluid 
flow. It is a globally  stable equilibrium  point if it is the only 
stable  equilibrium  point on the channel load line. Other- 
wise, it is a locally stable equilibrium  point. (Each  stable 
equilibrium  point is identified by a dot on channel load 
lines  in  Fig. 7 except in Fig. 7(c), where one of the  stable 
equilibrium  points is at n = 00 .) An equilibrium point is 
said to be an unstable  equilibrium  point if fluid flow ema- 
nates  from it. Thus,  the channel state N t  sitting on such  a 
point will drift  away from it given the slightest  perturba- 
tion.  The  stability definition given above is equivalent to 
defining a  stable  channel to be one whose channel load line 
has a globally stable  equilibrium  point. 

In Fig. 7 (a),  we show the channel load line of a stable 
channel. The globally stable equilibrium point  on the load 
line, (no,So), will be  referred to as  the channel  operating 
point. If M is finite, a stable  channel can always  be 
achieved by using a sufficiently large K (see  Fig. 4). Of 
course, a large K implies that  the equilibrium backlog size 
no is large; the corresponding average.packet  delay  may be 
too  large to be  acceptable. Since the  Markov chain N t  has 
a finite state space and is irreducible (assuming p,u > 0) , 
a stationary  probability  distribution always exists [27], 
[28]. The  stationary probability  distribution { P,) ,,OM of 
Nt can  be  computed by solving the following set of linear 
simultaneous  equations 

M 

Pj = p ip i j  j = 0,1,. *,&I 
i=O 

and 
M 

c p i = 1  
i-0 

where the  state  transition probabilities pij are given by 
(1 ) .  The  steady-state channel  throughput  rate Sout and 
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Fig. 7. Stable and unstable  channels. 

expected channel backlog fl can then be  obtained  from 

Sout = C Sout(n,u) P, (7) 
M 

n=O 

and 
M 

8 = nP,. (8 )  

Numerical results  have shown that these  values of Sout and m for  a  stable channel are closely approximated by  the 
equilibrium S, and no at the channel  operating  point,  and 
also by  the equilibrium throughput-delay  values  in Fig. 2 
for  the infinite  population model. For example, suppose 
K = 60, M = 200, and 1/u = 536.1 ; the equilibrium 
channel throughput  rate at the cha,nnel operating  point is 
So = 0.346. In Fig. 9 below (to be described later), we 
see that  the steady-state channel throughput  rate com- 
puted  by using (7) is Sou, = 0.344. For  the same example, 
fl is calculated to be 15.4 slots.  By  Little's  result [27], the 
average backlog time is 

n=l 

, .  

fl 15.4 D - - = - -  b -  - 44.8 slots. 
S o u t  0.344 

Applying (4) )  we get D = 44.8 + 13 = 57.8 slots. Now 
given X, = 0.346, the K = 60 equilibrium  throughput- 
delay  contour for the infinite population model [SI gives 
D = 56.5 slots. 

In Fig. 7(b),  we show the channel load line of an un- 
stable  channel. The point (no,#,) is again the desired 
channel operating  point since it yields the larger channel 
throughput  and smaller  average  packet  delay between the 
two locally stable equilibrium points  on the load line. In 
fact,  the  other locally stable equilibrium point,  having a 
huge backlog and  virtually zero throughput, corresponds 
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to  the channel saturation  state;  it will be referred to as  the 
channel  saturation  point. Although it has a stationary 
probability  distribution, N t  will ‘(flip-flop” between the 
two locally stable  equilibrium  points  in the following 
manner.  Starting  from  an  empty channel (NO = 0) quasi- 
stationary conditions will prevail at  the operating  point 
(no,S,). The channel, however, cannot  maintain equilib- 
rium a t  this  point indefinitely since Ntis a  random  process; 
that is,  with  probability one, the channel backlog N t  
crosses the unstable equilibrium point n, in  a finite time, 
and  as soon as it does, the channel input  rate S exceeds 
Sout(n,X). Under  this  condition, N t  will drift  toward the 
saturation  point. Although there is a nonzero probability 
that  Nt may return below n,, all our simulations show that 
the channel state  Nt accelerates up  the channel load line 
producing an increasing backlog and  a vanishing through- 
put  rate. Since the  saturation point is a locally stable 
equilibrium point,  quasi-stationary conditions will prevail 
there for some finite (but probably  very  long)  time period. 
In this  state,  the communication channel  can be regarded 
as having failed. (In a  practical  system,  external  control 
should be applied a t  this  point to restore  proper  channel 
operation.) Thus,  the two locally stable equilibrium points 
on the load line of an unstable channel correspond to  the 
channel being “up” or “down”. An unstable channel may 
be acceptable if the average channel up  time is large and 
external control is available to bring the channel back up 
whenever it goes down. 

In Figs. 8 and 9, we see how, as the number of channel 
users M increases, an originally stable channel becomes 
unstable  although the channel input  rate X, at  the operat- 
ing point remains constant (by reducing CT) . (These  results 
are obtained  by first solving for the  stationary probability 
distribution of N C  and  then applying (7)  and (8) .) For 
So = 0.36 and K = 10, we see that as M exceeds 80, the 
stationary channel throughput  rate decreases and  the 
average  packet  delay increases very  rapidly  with M .  Using 
the K = 10 equilibrium contour  in Fig. 4, the maximum 
value of M that is possible without  making the channel 
load line intersect  the equilibrium contour more than once 
is determined  (graphically) to be Mmax = 79, which 
exactly gives the knees of the  curves  in Fig. 8. This ex- 
cellent agreement provides the motivation  for the  stability 
definition proposed above. In Fig. 9, by using a  larger  value 
of K ( =60), a  larger MmBx is possible. Note, however, 
that  the average  packet  delay (h.56 slots) for K = 60 is 
much larger than  the average  packet  delay (=36 slots)  for 
K = 10. 

Given K and So, M,,, can  be  obtained  graphically from 
the equilibrium contours  such  as shown in Fig. 4. In Fig. 
10 we show M,,, as  a  function of K with So fixed at  the 
maximum possible value given K .  Note the linear relation- 
ship between M,,, and K for the values shown. In Fig. 11, 
we illustrate how an originally unstable channel can be 
rendered  stable by using a sufficiently large K.  

In Fig. 7(c), we show the channel load line of an in- 
finite population model. This is an unstable channel since 
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stable  equilibrium  point  in  this case is the  channel  satura- 
tion point! Thus,  this represents an "overloaded" channel 
as  a result of bad  system design. To correct  this  situation, 
the number of active  users M supported  by  the  channel 
should be reduced.  From now on, a stable  channel will 
always refer to  the load l i e  depicted in Fig. 7(a) instead 
of Fig. 7 (d) . 

Let  us  summarize  the  major conclusions in  the  above 
discussion. 

1) The  steady-state  throughput-delay  performance of a 
stable  channel is  closely approximated  by  its  globally 
stable  equilibrium  point  and by  the equilibrium  through- 
put-delay  results for the infinite  population model. 

2) In  an unstable  channel, the  throughput-delay  per- 
formance at  a locally stable  equilibrium  point  can be 
achieved only  for  some  finite  time  period. 

A Stability  Measure 
From  the above discussion and referring to  Fig. 7(b) 9 

the load line of an unstable  channel  can be partitioned 
into two regions. The safe region consisting of the  channel 
states (0,1,2,...,nc) and  the unsafe region consisting of 
the  channel  states {n, + 1, -  - - , M ) .  A good stability 
measure  (for  these  unstable channels!) is the  average  time 
to exit into  the unsafe region starting  from  a safe  channel 
state. To be exact, we define FET t o  be  the average jirst 
exit time into  the unsafe region starting from an initially 
empty  channel (NO = 0). Thus,  FET gives an approxi- 
mate  measure of the  average  up  time of an unstable 
channel. Below we derive the probability  distributions and 
expected values of such  first  exit  times. The derivations 
are based upon well-known results of first  entrance  times 
in the  theory of Markov  chains  with stationary  transition 
probabilities [ZS], [30]. 

Consider the  Markovian model with  constant M and 
CT, where M may be infinite. N t  is a  Markov process (chain) 
with  stationary  transition probabilities { p i j )  given  by (1) 
or (2). Define the  random variable Tij t o  be the  number of 
transitions which N t  goes through  until it  enters  state j for 
the first  time  starting  from state i. The probability  distri- 
bution of Tii (called the Jirst  entrance  probabilities from 
state i to  state j )  may be  defined as 

m = O  

m = l  

~~ ~~ 

n = * is a stable  equilibrium  point. In  fact, since Nt  has The  state space s for Nt  consists of the  set of nonnegative 
an infinite state  space  and S > Sout(n,S) for n > n,, a integers {0,1,2,. + -,n,, n, + 1,. - . ,M) which is parti- 
stationary probability distribution does not exist for N t .  tioned  into the safe region (0,1,2, - - - , n c )  and  the unsafe 
(See, for  example, [29, pp. 543-5461 for  such  a proof in  a region { n, + 1,. * , M ) .  Now consider the modified state 
queueing  context.)  space S' = { 0,1,2, - ,nc,n,) where n, is an  absorbing  state 

The  channel load  line  shown in Fig. 7(d) is stable  such that N t  is now characterized by  the  transition prob- 
according to  the  stability definition. However, the globally abilities 
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2-nc+l 

i = n . j = O  21, , .,n, 

a = 3  = nu. . .  
I 

Define the  random  variable Ti to be the number of 
transitions which N 1  goes through before it enters  the 
unsafe region for the first time  starting  from  state i in  the 
safe region. Ti is called the first  exit  time  from state i. The 
probability  distribution of Ti is defined to be { f i (m)  }m-lm 

which are called the first  exit  probabilities, It is trivial  to 
show that  starting  from  state i (0 i i 5 n,), the  first 
entrance probabilities into  the absorbing state nu in  the 
modified state space S’ are  the same as  the  first exit 
probabilities into  the unsafe region of S. Using (9), such 
probabilities are given by  the following recursive equation 
C301, 

no 

fin,(m) = pin,’S(m - 1 )  + Pii’fjn,(m - 1 )  
i = O  

m 2 1 ; i  # nu 
where 

I 1 m = l  

0 otherwise. 
8(m) = 

The above  equation  can  be  rewritten  in  terms of the first 
exit probabilities as 

M no 

f i (m)  = p i $ ( m  - 1 )  + p i i f j ( m  - 1 )  
j=nc+l j-0 

m 2 l ; O l i < n e  

( 1 1 )  

where f i (m) can be solved recursively for m 2 1 starting 
with f;(O) = 0 for all i. 

The  probability  distribution { f i (m)  },I” for  the random 
variable Ti typically  has  a  very  long  tail  and  cannot  be 
easily computed. We had defined earlier FET as  a  stability 
measure for an unstable channel. By our definition, FET 
is the same as  the expected  value of the  random  variable 
To. Let ?li be the expected  value and Ti2 be the second 
moment of Ti. These  moments  can  be  obtained  by solving 
a  set of linear simultaneous equations. It can easily be 
shownC301 that 

no 

Pi = 1 + p<i?li i = 0, 1,. --,n, ( 1 2 )  

T,2 = 2?li - 1 + P i j F  

i=O 

no 

i = 0, 1,. -*,n,. (13) 

Equation ( 1 2 )  forms  a set of n, + 1 linear simultaneous 
equations  from which ( !f?i]i=On= can  be solved and  the 
stability measure FET ( = determined.  After { Pi} i-onc 
have  been found, (13) can then be solved in  a similar 
manner for { TT} i=Onc. 

Numerical  Results 

j=O 

With  the  stability measure defined above, we are now 
in  a position to examine quantitatively  the  tradeoff among 
channel stability,  throughput  and  delay  for unstable 
channels. Below  we first give a  computational  procedure 
to solve for !f?i and hence, FET. We then compute  these 
quantities for various values of K ,  So, and M (correspond- 
ing to different channel  load  lines). The  trading relations 
among  channel stability,  throughput,  and delay  are then 
illustrated. 

The solution of the  set of simultaneous  equations in 
either ( 1 2 )  or (13) requires inverting  the (n, + 1 )  by 
(n, + 1 )  matrix of pij for i, j = 0, 1, - - - ,n,. When n, is 
large, this becomes a  nontrivial  task because of the large 
number of computational  steps  and large computer 
storage  requirement for the [ p ~ j ]  matrix.  The  fact  that 
pij = 0 for j i - 2 in (1) and ( 2 )  enables us to use an 
algorithm  given in the Appendix which is very efficient in , 

terms of both  computer  time  and  space requirements. For 
our purposes, this algorithm is superior to conventional 
methods  such as Gauss elimination [31] for solving linear 
simultaneous  equations. In  this algorithm, each pii is used 
exactly once and can  be  computed using ( 1 )  or ( 2 )  only 
when it is needed  in the algorithm. This eliminates the need 
for storing  the [p i i ]  matrix  and practically eliminates any 
computer  storage  constraint on the dimensionality of the 
problem. The number of arithmetic operations (+ - X 
+) required by  the above  algorithm is in  the order of 2n,2 
which is comparable to  that of Gauss elimination. 

In  Fig. 12, we show FET  as a function of K for the in- 
finite  population  model and for fixed values of the channel 
throughput  rate So (at  the channel  operating  point). We 
see that  FET can be improved by  either decreasing the 
channel throughput  rate So or by increasing K (which  in 
turn increases the average  packet delay).  The infinite 
population  model  results give the worst case estimates for 
channel stability  as  demonstrated  in Fig. 13 in which we 
show FET as  a function of M for K = 10 and four values 
of So. Note that  FET increases as Ad decreases and  there is 

i‘ with  probability pinu’ a  critical  value of M below  which the channel is always 
stable  in  the sense of Fig. 7 (a).  As M increases to in- 
finity, FET reaches a limiting value  corresponding to  the 
infinite population  model  with  a  Poisson  channel input. 

from which we obtain [28],  [30] Fig. 14 is similar to Fig. 12 except now the number of users 

Ti = 
1 + Tj with  probability pij 
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M is 150. Recall that if M is finite, the channel will become 
stable when K is sufficiently large. 

As an example, we see that in Fig. 14 for M = 150, if 
the channel throughput  rate X ,  is kept a t  approximately- 
0.28 and K = 10 is used, the channel is estimated  to fail 
once  every  two  days  on the average. If this is an acceptable 
level of channel reliability, then no other channel  control 
procedure is necessary  except to  restart  the channel 
whenever it goes into  saturation. However, if absolute 
channel reliability is required a t  the  same  ,throughput- 
delay  performance, then  dynamic channel  control strate- 
gies should be adopted.  Channel control schemes  have  been 
studied [lo] and  the  results will be  published  in  a forth- 
coming paper  [l]. 

In  Fig. 15, we show the  optimum performance  envelope 
in  Fig. 2 as a lower bound for the  throughput-delay 
tradeoff of the infinite population  model.  This corre- 
sponds  to  the performance of the channel at the channel 
operating  point.  However,  from Fig. 7, we see that the 
channel  operating  point (n,,X,) provides no  information 
regarding  the  stability behavior of the  channel. The equilib- 
rium  performance  given by (n,,S,) is achievable in  the 
long run if M is small  enough  such that  the channel is 
stable; elsewhere it is achievable only for some  random 
time  period whose average is estimated  by  our  stability 
measure FET . 

In  addition  to  the infinite population  model  optimum 
envelope, we also  show in Fig. 15  two sets of equilibrium 
.throughput-delay  performance  curves  with  guaranteed 
FET values.  The first set .consists of three solid curves 
corresponding to  an infinite population  model  with  the 
stability measure FET 2 1 day, 1 hour, and 1 minute. 
Again,  these  results  represent  worst case estimates if M is 
actually finite. The second set consists of two  dashed 
curves  corresponding to M = 150 with FET 2 1 day  and 
1 hour. These  results  were  obtained by looking up  the 
values of K and X ,  in Fig. 12 or Fig. 14 corresponding to  a 
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fixed FET. The average  packet  delay was then obtained 
from Fig. 2. This figure illustrates the fundamental  trade08 
among  channel  stability,  throughput and delay. In [l], 
[lo], control strategies are devised to dynamically regu- 
late  the channel usage to achieve truly  stable  throughput- 
delay performance close t.o the optimum performance 
envelope. 

A Design  Example 

The designer of a slotted ALOHA channel is faced with 
the problem of deciding whether he wants 1) a  stable 
channel by  limiting its use to a small population of users 
and sacrificing channel utilization,  or 2) an unst,able 
channel which supports a large  population of users operat- 
ing a t  a  certain level of reliability (some value of FET).  
For example, suppose K is chosen to be 10. (Note  in Fig. 
2 that K = 10 gives close to optimum equilibrium through- 
put-delay performance over a wide range of channel 
throughput  rate.) Also, suppose that  the cha.nne1 users 
have an average  think  time of 20 s which, for our channel 
numerical constants, corres,pond to 888 time  slots. Now if 
we draw channel load lines in Fig. 4 with  a slope equal to 
-888, the channel is stable  up  to approximately 110 
channel users.  For M = 110, the channel throughput  rate 
So is about 0.125 packet/slot.  From Fig. 2, the average 
packet delay is roughly 16.5 time  slots (=0.37 s). The 
same channel can be used (in  an unstable mode) to support 
220 users a t  a  channel  throughput rate of So = 0.25 
packet/slot. The average  packet  delay is 21 time  slots 
(=0.47 s) .  From Fig. 12, for K = 10 and So = 0.25, the 
average  up  time (FET) of the channel is approximately 
two days for the infinite population model. Note that  this 
value represents  a lower bound for the  FET of M = 220. 
Thus, we see that if a channel failure rate of once every two 
days on the average is an acceptable level of reliability,  the 
second channel design is much more attractive  than  the 
first since the number of channel users is more than 
doubled a t  a modest increase in  delay. 

CONCLUSIONS 

In this  paper,  the  rationale  and some advantages for 
broadcast  packet communication have been discussed. A 
mathematical model was then formulated for a  slotted 
ALOHA random access system. IJsing this model, a 
theory was put  forth which gives a  coherent  qualitative 
interpretation of the system  stability behavior. Quanti- 
tative estimates for the relative  instability of unstable 
channels were obtained  through definition of the  stability 
measure FET. Numerical results were shown illustrating 
the  trading relations among channel stability,  throughput 
and average  packet delay. These  results  establish tools for 
the performance evaluation and design of an uncontrolled 
slotted ALOHA system. Further  'improvement in the 
system performance may be accomplished through 
adaptive control techniques studied  in [l], [lo]. 

APPENDIX 

The algorithm below solves for the variables { t i )  ioo' in 
the following set of ( I  + 1) linear  simultaneous  equations, 

I 

to = ho + pojtj (AI) 
j-0 

I 

ti = hi + pijtj i = 1, 2, .  *, I .  (A21 
j-i-1 

The  Algorithm 
1) Define 

er = 1 

f r  = 0 

er-l = - 1 - prr 
PIJ-1 

2) For i = I - 1, I - 2,-  . ,1 solve recursively 
1 I 

3) Let 

Derivation of the  Algorithm 

Define 

and 

er = 1 

f r  = 0. 

The  last  equation  in (A2) is 
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Equating  the coefficients of tr and  the  constant  terms, we 
have 

= ~ 

1 - P I I  

P I J -  1 

hr f ’ - - - -  

pz,z- 1 
1-1 - 

Equation (A2) can be  rewritten  as follows, 

1 I 

ti-1 = - [t i  - hi  - pijt j] .  (A6) 
pi,i-l j= i 

In  each of the  above  equations,  use (A3) to  substitute for 
t i .  We then  have 

I I 

L (C piiej)tr  - C p i j f i ] .  
j=.i j= i 

Equating  the coefficients of tl and  the  constant  terms, we 
get 

i I 

1 Z 

From (A4),  (A5), and (A7), ei and f i  (i = I - 2, I - 3, - * , l , O )  can  then be  determined recursively. 
We next solve for t I .  Equation (A3) is used to  sub- 

stitute for t i  in (Al).,  which then  becomes 
I .  Z 

eotI + fo = ‘ho + cc pojej)tr + c pojfi. 
j-0 j=O 

Solving for tI in  the above  equation, we have 

Finally, t i ( i  = 0,1, 2, -  -.,I - 1) can  be  obtained from 
(A3),  since e;, f i ,  and t I  are all known. The  derivation of the 
algorithm is now complete. 
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Quantization Error in Predictive  Coders 

Abstract-Predictive coders  have been suggested  for use  as analog 
data compression devices. Exact  expressions  for  reconstructed  signal 
error have  been  rare  in  the  literature.  In fact  most results reported 
in  the  literature i r e  based on the assumption of Gaussian statistics 
for prediction error. Predictive coding of first-order GaussianMarkov 
sequences  are considered in  this paper. A numerical iteration tech- 
nique is  used  to solve for the prediction error  statistics  expressed 
as  an infinite series in terms of Hermite polynomials. Several  inter- 
esting properties of predictive coding are thereby demonstrated. 
First, prediction error is in fact close to Gaussian,  even for thebinary 
quantizer.  Sencond,  quantizer  levels may  be optimized at each itera- 
tion according to  the calculated  density. Finally, the existence of 
correlation  between  successive  quantizer outputs  is shown. Using the 
series solutions  described  above,  performance in  terms of mean- 
square reconstruction error  versus bit rate  can  be shown to parallel 
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the theoretical rate distortion  function  for the first-order  Markov 
process by about 0.6 bits/sample at low bit rates. 

I. INTRODUCTION 

T HE PREDICTIVE coder  shown in Fig. 1 has been 
suggested for video and voice coding applications. The 

usefulness of predictive coding for data compression and 
digitization of analog  signals  is well known,  yet  due to its 
nonlinear nature, few exact  solutions for quantization  error 
can  be  found.  Let  us  note that  the signal y k  can  be con- 
sidered a sample  function of a Gaussian Markov sequence 
generated  according to  the recursion equation 

N 

y k  = wk + C anyk--n (1) 

and Wk is  a sequence of independent  unit  variance  (zero 
mean) Gaussian  variables.  Such  functions are known as 
Gaussian  autoregressive sequences and  may  be used t o  
model signals whose spectra  contain  no zeros. 

n=l 


